
Tests of the Electroweak Theory

- History/introduction
- Weak charged current
- QED
- Weak neutral current
- Precision tests
- Rare processes
- ullet CP violation and B decays
- Neutrino mass

References (mainly weak neutral current/Z-pole)

- E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptons and Quarks, (Cambridge Univ. Press, Cambridge, 1983)
- P. Renton, *Electroweak Interactions*, (Cambridge Univ. Press, Cambridge, 1990)
- P. Langacker, M.-X. Luo and A. K. Mann, High precision electroweak experiments, Rev. Mod. Phys. 64, 87 (1992)
- Precision Tests of the Standard Electroweak Model, ed. P. Langacker (World Scientific, Singapore, 1995)
- S. Eidelman *et al.* [Particle Data Group], Phys. Lett. B 592, 1 (2004) (Electroweak review, J. Erler and PL)
- LEP Electroweak Working Group: http://www.cern.ch/LEPEWWG/

Weak-Electromagnetic Interference

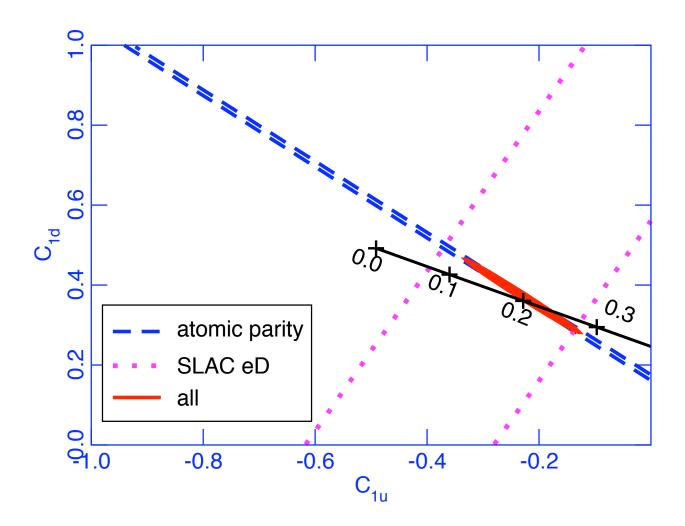
- Low energy: Z exchange much smaller than Coulomb, but observe V-A (parity-violating) and A-A (parity conserving) effects
- High energy: γ and Z may be comparable (propagator effects)
- Observables
 - Polarization (charge) asymmetries in $eD{\to}eX$ (SLAC), $\mu C{\to}\mu X$ (CERN); e^-e^- Møller (SLAC); low energy elastic or quasi-elastic (Mainz, Bates, CEBAF)
 - Atomic parity violation in Cs (Boulder, Paris) and other atoms
 - Cross sections and FB asymmetries in $e^+e^-{\to}\ell\bar\ell, q\bar q, b\bar b$ (SPEAR, PEP, DORIS, TRISTAN, LEP II)
 - FB asymmetries in $\bar{p}p{
 ightarrow}e^+e^-$ (CDF, D0)

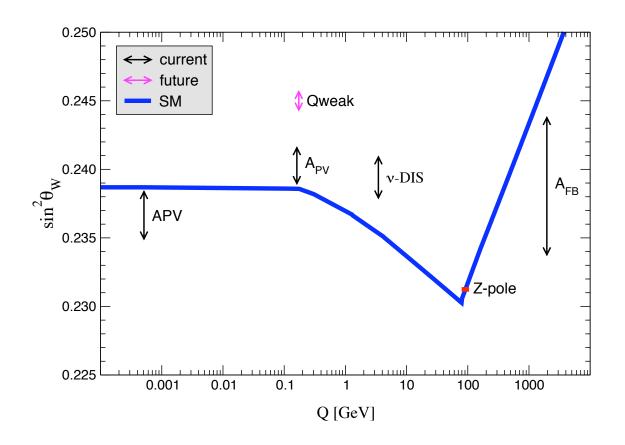
• Parity-violating *e*-hadron

$$L^{eq} = rac{G_F}{\sqrt{2}} \sum_i \left[C_{1i} \; ar{e} \; \gamma_{\mu} \; \gamma^5 \; e \; \; \; ar{q}_i \; \gamma^{\mu} \; q_i + C_{2i} \; ar{e} \; \gamma_{\mu} \; e \; \; \; ar{q}_i \; \gamma^{\mu} \; \gamma^5 \; q_i
ight]$$

• Standard model (leading: $ho \sim 1 +
ho_t, \; \kappa \sim 1, \; \lambda \sim 0$)

$$egin{array}{ll} C_{1u} &\sim & -rac{1}{2} + rac{4}{3} {
m sin}^2 \, heta_W
ightarrow
ho_{eq}' \left(-rac{1}{2} + rac{4}{3} \hat{\kappa}_{eq}' \, \hat{s}_Z^2
ight) + \lambda_{1u} \ & C_{1d} &\sim & rac{1}{2} - rac{2}{3} {
m sin}^2 \, heta_W
ightarrow
ho_{eq}' \left(rac{1}{2} - rac{2}{3} \hat{\kappa}_{eq}' \, \hat{s}_Z^2
ight) + \lambda_{1d} \ & C_{2u} &\sim & -rac{1}{2} + 2 \, {
m sin}^2 \, heta_W
ightarrow
ho_{eq} \left(-rac{1}{2} + 2 \hat{\kappa}_{eq} \, \hat{s}_Z^2
ight) + \lambda_{2u} \ & C_{2d} &\sim & rac{1}{2} - 2 \, {
m sin}^2 \, heta_W
ightarrow
ho_{eq} \left(rac{1}{2} - 2 \hat{\kappa}_{eq} \, \hat{s}_Z^2
ight) + \lambda_{2d} \ & \end{array}$$


- Atomic parity violation
 - Axial e^- , vector nucleon currents lead to potential


$$V(ec{r}_e) \sim rac{G_F}{4\sqrt{2}} Q_W \delta^3(ec{r}_e) rac{ec{\sigma}_e \cdot ec{v}_e}{c} + ext{ HC}$$

- Weak charge

$$egin{array}{lcl} Q_W & = & -2 \left[C_{1u} \left(2Z + N
ight) + C_{1d} (Z + 2N)
ight] \ & pprox & Z (1 - 4 \sin^2 heta_W) - N \end{array}$$

- Measure in 6S 7S transition (S P wave mixing)
- Cs is very simple atom; radiative corrections now under control

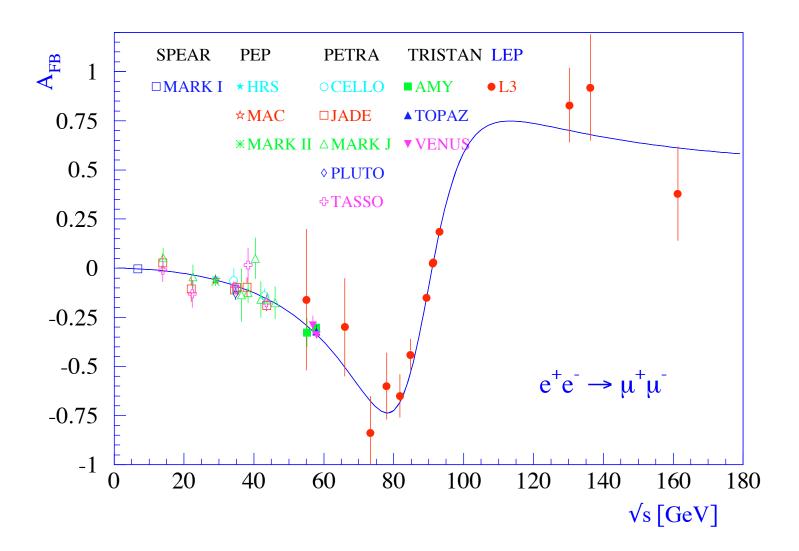
(Running \hat{s}_Z^2 in $\overline{\mathrm{MS}}$ scheme)

- SLAC E158 Polarized Møller Asymmetry
 - e^-e^- asymmetry, $P\sim 90\%$
 - $-\sin^2 heta_W^{eff}(Q) = \ 0.2397 \ \pm \ 0.0013 \ {
 m at} \ \ Q^2 = \ 0.026 \ {
 m GeV}^2$
- ullet Future Q_{WEAK} (CEBAF): polarized ep, $\Delta s^2 \sim 0.0006$

Quantity	Experimental Value	SM	Correlation		
$\epsilon_L(u)$	0.326 ± 0.013	0.3459(1)			
$\epsilon_L(d)$	$-0.441\ \pm0.010$	-0.4291(1)	non-		
$\epsilon_R(u)$	$-0.175 \begin{array}{l} +0.013 \\ -0.004 \end{array}$	-0.1550(1)	Gaussian		
$\epsilon_R(d)$	$-0.022 {}^{+0.072}_{-0.047}$	0.0776			
g_L^2	0.3005 ± 0.0012	0.3038(2)	-0.11 -0.21 -0.01		
g_R^2	0.0311 ± 0.0010	0.0301	-0.02 -0.03		
$ heta_L$	2.51 ± 0.033	2.4631(1)	0.26		
$ heta_R$	$4.59 {}^{+0.41}_{-0.28}$	5.1765			
$g_V^{ u e}$	-0.040 ± 0.015	-0.0396(3)	-0.05		
$g_A^{ u e}$	-0.507 ± 0.014	-0.5064(1)			
$\overline{C_{1u} + C_{1d}}$	0.147 ± 0.004	0.1529(1)	0.95 -0.75 -0.10		
$C_{1u} - C_{1d}$	-0.604 ± 0.066	-0.5297(4)	-0.79 -0.10		
$C_{2u} + C_{2d}$	0.72 ± 0.89	-0.0095	-0.11		
$C_{2u} - C_{2d}$	-0.071 ± 0.044	-0.0621(6)			

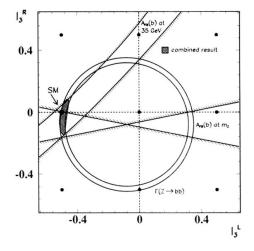
- $e^+e^-{
 ightarrow}\ell^+\ell^-$, $\ell=\mu$ or au (t-channel for Bhabha, $e^+e^-{
 ightarrow}e^+e^-$)
 - Rate: R = rate relative to pure QED
 - Forward-backward asymmetry: $A_{FB} \equiv rac{\sigma_F \sigma_B}{\sigma_F + \sigma_B}$

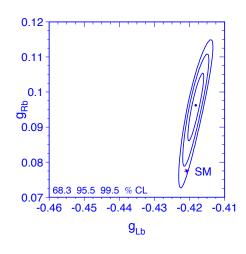
$$R=F_1 \hspace{1cm} A_{FB}=3F_2/4F_1$$

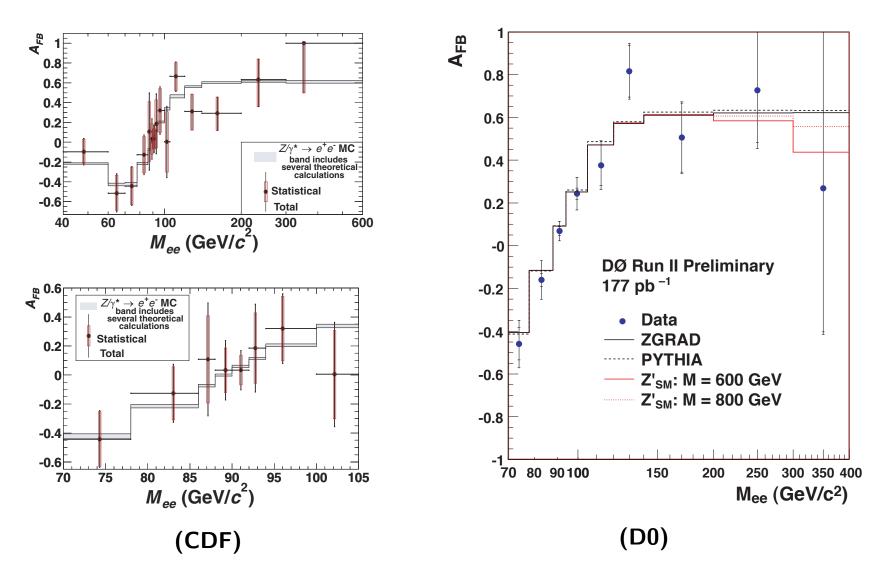

where

$$egin{array}{lll} F_1 &=& 1-2\chi_0 \ g_V^e \ g_V^\ell \ \cos\delta_R + \chi_0^2 \left(g_V^{e2} + g_A^{e2}
ight) \left(g_V^{\ell2} + g_A^{\ell2}
ight) \ F_2 &=& -2\chi_0 \ g_A^e \ g_A^\ell \ \cos\delta_R + 4\chi_0^2 \ g_A^e \ g_A^\ell \ g_V^e \ g_V^\ell \end{array}$$

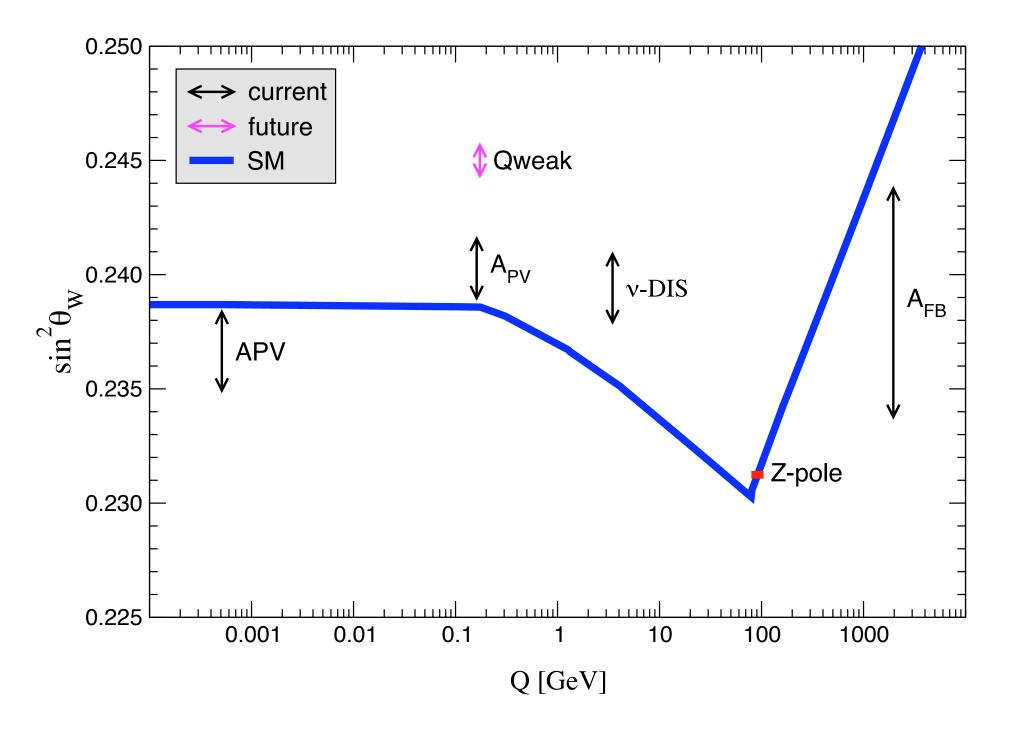
with


$$\chi_0 = rac{G_F}{2\sqrt{2}\pilpha} rac{sM_Z^2}{\left[(M_Z^2 - s)^2 + M_Z^2\Gamma_Z^2
ight]^{1/2}} \hspace{1cm} an\delta_R = rac{M_Z\Gamma_Z}{M_Z^2 - s}$$


– SM:
$$g_A^\ell=-rac{1}{2}$$
 $g_V^\ell=-rac{1}{2}+2\sin^2 heta_W$


The Weak Interactions of the b

- $e^+e^-{ o}b$ \bar{b} (full strength interaction)
 - Jade (DESY, 1988): $A_{FB}^b(35~{
 m GeV})
 ightarrow t_{3L}^b t_{3R}^b = -0.54 \pm 0.15$
 - LEP (1992): Γ_b/Γ_{had} and $A_{FB}^b(M_Z)$; LEP + SLC (2005)



- CLEO (1987): absence of FCNC $B \rightarrow l^+ l^- X$ (but reduced strength)
- ullet ARGUS (1987), CLEO: $B^0 ar{B}^0$ oscillations $ightarrow m_t > 50$ GeV
- Hence, b in left-handed doublet $\rightarrow t$ quark must exist (1988) (more general than anomaly cancellation)

Forward-backward asymmetry in $\bar{p}p{ o}e^+e^-$

(Running \hat{s}_Z^2 in $\overline{\mathrm{MS}}$ scheme)

Precision Tests

- ullet The W and Z Masses and Decays
- The Z pole
- LEP II
- Global fits
- Beyond the standard model

The W and Z Masses and Decays

ullet On-shell scheme, $s_W^2 \equiv 1 - M_W^2/M_Z^2$

$$M_W = rac{A_0}{s_W(1-\Delta r)^{1/2}} \hspace{1cm} M_Z = rac{M_W}{c_W}$$

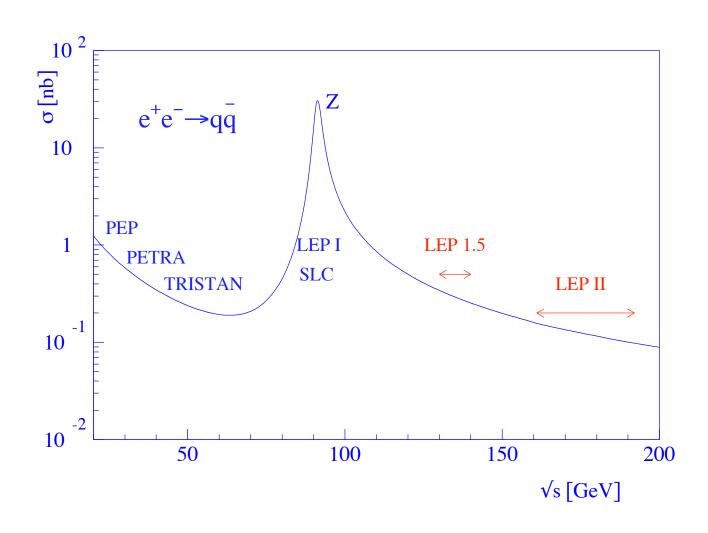
 $c_W^2=1-s_W^2$, $A_0=(\pi lpha/\sqrt{2}G_F)^{1/2}=37.2805(2)$ GeV $\Delta r
ightarrow$ rad. corrections relating lpha, $lpha(M_Z)$, G_F , M_W , and M_Z

$$\Delta r \sim 1 - rac{lpha}{\hat{lpha}(M_Z)} - \underbrace{rac{
ho_t}{ an^2 heta_W}}_{ ext{artificially large}} + ext{small}$$

$$ho_t \equiv rac{3 G_F m_t^2}{8 \sqrt{2} \pi^2} = 0.00935 \left(rac{m_t}{172.7 \; {
m GeV}}
ight)^2.$$

• Modified minimal subtraction ($\overline{\mathrm{MS}}$) scheme

$$M_W = rac{A_0}{\hat{s}_Z(1-\Delta \hat{r}_W)^{1/2}} \qquad M_Z = rac{M_W}{\hat{
ho}^{1/2}\hat{c}_Z} \ \Delta \hat{r}_W \sim rac{1-rac{lpha}{\hat{lpha}(M_Z)} + ext{small}}{0.06654(14)} \ \hat{
ho} \sim 1 + rac{3}{8}rac{G_F m_t^2}{\sqrt{2}\pi^2} + ext{small}$$


• The W decay width

$$\Gamma(W^+
ightarrow e^+
u_e) \;\; = \;\; rac{G_F M_W^3}{6\sqrt{2}\pi} pprox 226.29 \pm 0.16 \; {
m MeV} \ \Gamma(W^+
ightarrow u_i ar{d}_j) \;\; = \;\; rac{C G_F M_W^3}{6\sqrt{2}\pi} \; |V_{ij}|^2 pprox (706.24 \pm 0.49) \, |V_{ij}|^2 \; {
m MeV} \ C \;\; = \;\; \left\{ egin{array}{c} 1, & {
m leptons} \ \sqrt{1 + rac{lpha_s(M_W)}{\pi}} + 1.409 rac{lpha_s^2}{\pi^2} - 12.77 rac{lpha_s^3}{\pi^3}
ight), \; {
m quarks} \end{array}
ight.$$

- Also, QED, mass; $g^2 M_W/4\sqrt{2} \!\! o G_F M_W^3$ absorbs running lpha
- $-\Gamma_W\sim 2.0910\pm 0.0015$ GeV (SM)
- Experiment (LEP,CDF, D0): $\Gamma_W=2.138\pm0.044$ GeV; $\bar{p}p$ uses

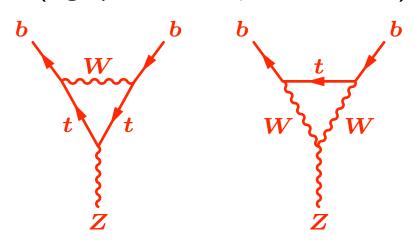
$$\frac{\sigma(\bar{p}p \! \to W \! \to \ell \nu_\ell)}{\sigma(\bar{p}p \! \to Z \! \to \ell \bar{\ell})} = \underbrace{\frac{\sigma(\bar{p}p \! \to W)}{\sigma(\bar{p}p \! \to Z)}}_{\text{theory}} \underbrace{\frac{\Gamma(W \! \to \ell \nu_\ell)}{\Gamma(W \! \to \ell \nu_\ell)}}_{\text{theory}} \underbrace{\frac{1}{B(Z \! \to \ell \bar{\ell})}}_{\text{LEP}} \frac{1}{\Gamma_W}$$

The Z pole

The Effective Weak Angle for On-Shell Z

ullet $Zfar{f}$ coupling relevant for on-shell Z

$$\mathcal{L}^{Zfar{f}} = -rac{g}{2\cos heta_W} Z_{\mu} \; ar{f} \gamma^{\mu} (ar{g}_{Vf} - ar{g}_{Af} \gamma^5) f$$


$$ar{g}_{Af} = \sqrt{
ho_f} t_{3L}^f \Longrightarrow_{ ext{tree}} t_{3L}^f$$
 $ar{g}_{Vf} = \sqrt{
ho_f} \left(t_{3L}^f - 2\kappa_f \ s_W^2 q_f
ight) \Longrightarrow_{ ext{tree}} t_{3L}^f - 2\sin^2 heta_W q_f$

- ullet t_{3L}^f is weak isospin of f ($+\frac{1}{2}$ for (u,
 u); $-\frac{1}{2}$ for (d, e^-)); q_f is the electric charge
- ρ_f and κ_f incorporate (f-dependent) electroweak correction (mainly propagator and vertex)

• On-shell
$$(f
eq b)$$
: $ho_f \sim 1 +
ho_t$ $\kappa_f \sim 1 + rac{
ho_t}{ an^2 heta_W}$

$$\kappa_f \sim 1 + rac{
ho_t}{ an^2 heta_W}$$

ullet MS (f
eq b): $ho_f
ightarrow \hat{
ho}_f \sim 1, \; \kappa_f
ightarrow \hat{\kappa}_f \sim 1, \; s_W^2
ightarrow \hat{s}_Z^2$ (e.g., $\hat{
ho}_{\ell} = 0.9981, \ \hat{\kappa}_{\ell} = 1.0013$)

 $-\hat{
ho}_b, \quad \hat{\kappa}_b \quad ext{have} \quad ext{quadratic} \ m_t \quad ext{dependence from vertex} \ (\hat{
ho}_b = 0.9870, \; \hat{\kappa}_b = 1.0067)$

• Effective weak angle: (f-dependent) tree level formula (except ρ_f)

$$ar{g}_{Af} = \sqrt{
ho_f} t_{3L}^f \qquad \qquad ar{g}_{Vf} = \sqrt{
ho_f} \left(t_{3L}^f - 2 ar{s}_f^2 q_f
ight)$$

$$\bar{s}_f^2 = \kappa_f s_W^2 = \hat{\kappa}_f \hat{s}_Z^2 \longrightarrow \bar{s}_\ell^2 = \hat{\kappa}_\ell \hat{s}_Z^2 \sim \hat{s}_Z^2 + 0.00029$$

The LEP/SLC Era

- Z Pole: $e^+e^- o Z o \ell^+\ell^-, \quad q ar q, \quad
 u ar
 u$
 - LEP (CERN), 2×10^7 Z's, unpolarized (ALEPH, DELPHI, L3, OPAL); SLC (SLAC), 5×10^5 , $P_{e^-}\sim75$ % (SLD)
- Z pole observables
 - lineshape: M_Z, Γ_Z, σ
 - branching ratios

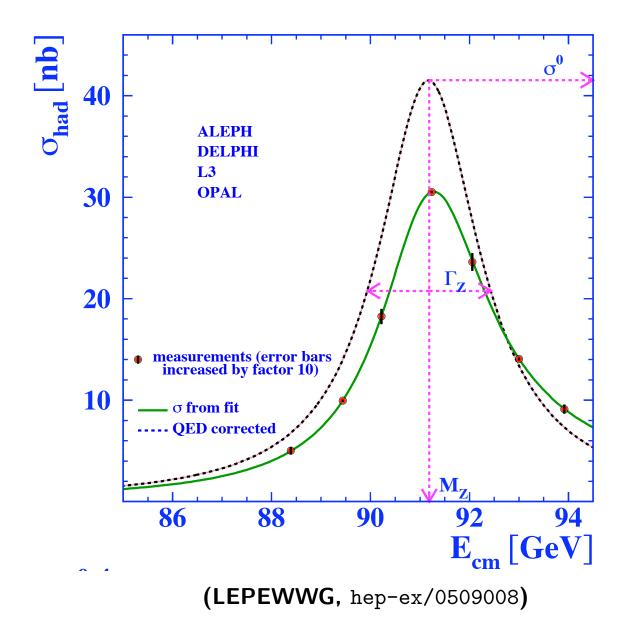
$$* e^+e^-, \mu^+\mu^-, au^+ au^-$$

- $*~qar{q},car{c},bar{b},sar{s}$
- $*~
 uar{
 u} \Rightarrow N_
 u = 2.984 \pm 0.009$ if $m_
 u < M_Z/2$
- asymmetries: FB, polarization, $P_{ au}$, mixed
- lepton family universality

The Z Lineshape

Basic Observables: $e^+e^-{ o}far f$ $(f=e,\mu, au,s,b,c,$ hadrons) $(s=E_{CM}^2)$

$$\sigma_f(s) \sim \sigma_f rac{s\Gamma_Z^2}{\left(s-M_Z^2
ight)^2 + rac{s^2\Gamma_Z^2}{M_Z^2}}$$


(plus initial state rad. corrections)

 M_Z and Γ_Z : from peak position and width

Peak Cross Section:

$$\sigma_f = rac{12\pi}{M_Z^2} \; rac{\Gamma(e^+e^-)\Gamma(far{f})}{\Gamma_Z^2}$$

(Z model independent; γ and $\gamma-Z$ int. removed, (usually) assuming S.M.)

The Z width and partial widths

$$\Gamma(far{f}) \sim rac{C_f G_F M_Z^3}{6\sqrt{2}\pi} \underbrace{\hat{
ho}}_{ ext{only}} ar{||ar{g}_{Vf}|^2 + |ar{g}_{Af}|^2|}$$

(plus fermion mass, QED (2 loop), QCD (3 loop), mixed QED-QCD (2 loop) corrections; $C_\ell=1,\ C_q=3)$

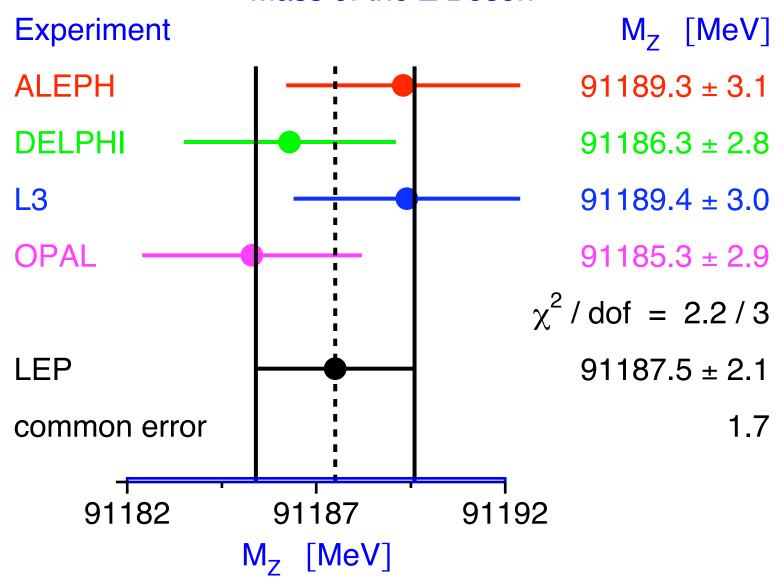
$$ar{g}_{Af}=\sqrt{
ho_f}t_{3L}^f \qquad ar{g}_{Vf}=\sqrt{
ho_f}\left(t_{3L}^f-2ar{s}_f^2q_f
ight) \ ar{s}_f^2=\kappa_f s_W^2=\hat{\kappa}_f\hat{s}_Z^2$$

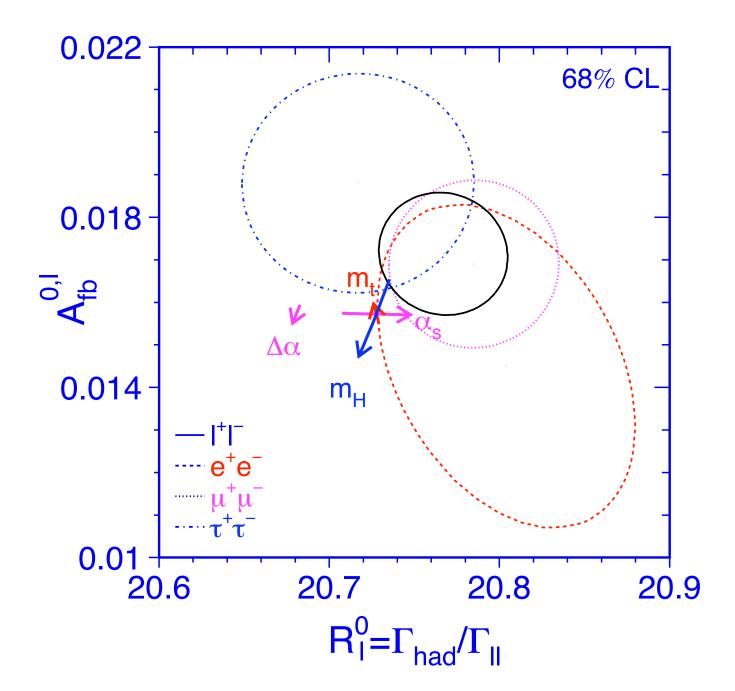
• Standard model ($m_t = 172.7(2.9)(0.6)$ GeV, $M_H = 117$ GeV)

$$\Gamma(far{f}) \sim \left\{egin{array}{ll} 300.18 \pm 0.14 \; \mathsf{MeV}(uar{u}), & 167.21 \pm 0.05 \; \mathsf{MeV}(
uar{
u}) \ 382.97 \pm 0.14 \; \mathsf{MeV}(dar{d}), & 83.99 \pm 0.03 \; \mathsf{MeV}(e^+e^-) \ 375.95 \mp 0.10 \; \mathsf{MeV}(bar{b}) \end{array}
ight.$$

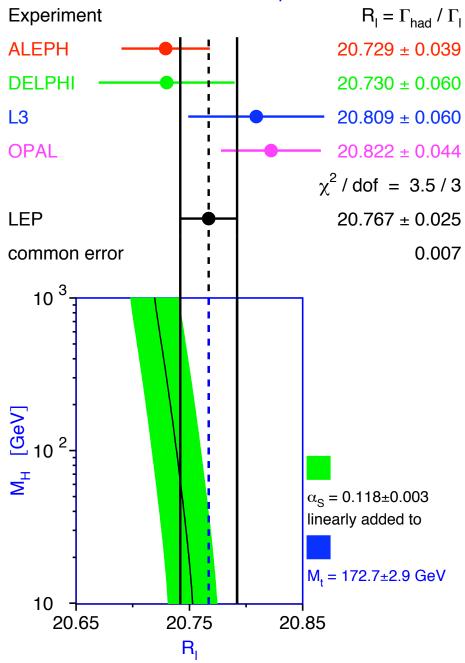
ullet Conventional (weakly correlated) observables: $M_Z, \Gamma_Z, \sigma_{
m had}, R_\ell, R_b, R_c$

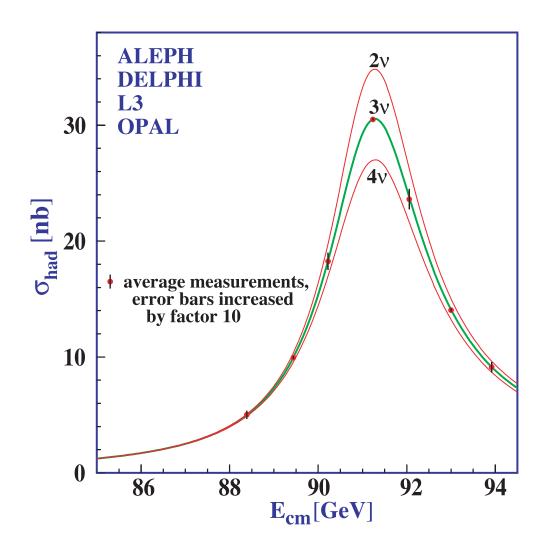
$$egin{array}{lll} \sigma_{
m had} &\equiv & rac{12\pi}{M_Z^2} \; rac{\Gamma(e^+e^-)\Gamma(Z
ightarrow \, {
m hadrons})}{\Gamma_Z^2} \ & R_{q_i} &\equiv & rac{\Gamma(q_iar{q}_i)}{\Gamma({
m had})}, \;\; q_i=(b,c) \ & R_{\ell_i} &\equiv & rac{\Gamma({
m had})}{\Gamma(\ell_iar{\ell}_i)}, \;\; \ell_i=(e,\mu, au) \end{array}$$


(lepton universality test: $R_e = R_\mu = R_ op \to R_\ell$)


Derived

$$\Gamma(ext{inv}) = \Gamma_Z - \Gamma(ext{had}) - \sum_i \Gamma(\ell_i ar{\ell}_i) \equiv N_
u \Gamma(
u ar{
u})$$


(counts anything invisible in detector)


Mass of the Z Boson

Ratio of Hadronic to Leptonic Width

- $\bullet~N_{
 u}=3+\Delta N_{
 u}=2.984\pm0.009$
- $ullet \Delta N_
 u = 1$ for fourth family u with $m_
 u \lesssim M_Z/2$
- ullet $\Delta N_
 u = rac{1}{2}$, light ilde
 u in supersymmetry
- ullet $\Delta N_
 u = 2$, Majoron + scalar in triplet model of $m_
 u$ with spontaneous L violation

Without lepton universality		Corre	lations							
$\chi^2/\text{dof} = 32.6/27$		$m_{ m Z}$	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	$R_{ m e}^0$	R^0_μ	$R_{ au}^{0}$	$A_{ m FB}^{0,{ m e}}$	$A_{ m FB}^{0,\mu}$	$A_{ m FB}^{0, au}$
$m_{\rm Z} \; [{\rm GeV}]$	91.1876 ± 0.0021	1.000								
$\Gamma_{\rm Z} \; [{\rm GeV}]$	2.4952 ± 0.0023	-0.024	1.000							
$\sigma_{\rm had}^0 \; [{\rm nb}]$	41.541 ± 0.037	-0.044	-0.297	1.000						
$R_{ m e}^0$	20.804 ± 0.050	0.078	-0.011	0.105	1.000					
R_{μ}^{0}	20.785 ± 0.033	0.000	0.008	0.131	0.069	1.000				
$R_{ au}^{0}$	20.764 ± 0.045	0.002	0.006	0.092	0.046	0.069	1.000			
$R_{ m e}^{0}$ $R_{ m \mu}^{0}$ $R_{ m T}^{0}$ $A_{ m FB}^{0,{ m e}}$	0.0145 ± 0.0025	-0.014	0.007	0.001	-0.371	0.001	0.003	1.000		
$A_{ m FB}^{ar 0,\mu}$	0.0169 ± 0.0013	0.046	0.002	0.003	0.020	0.012	0.001	-0.024	1.000	
$A_{ m FB}^{0, au}$	0.0188 ± 0.0017	0.035	0.001	0.002	0.013 -	-0.003	0.009	-0.020	0.046	1.000

With lepton universality		Correlations					
$\chi^2/\text{dof} = 36.5/31$		$m_{ m Z}$	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	R_ℓ^0	$A_{ m FB}^{0,\ell}$	
	91.1875 ± 0.0021	1.000					
$\Gamma_{\rm Z}$ [GeV]	2.4952 ± 0.0023	-0.023	1.000				
$\sigma_{\rm had}^0 [{\rm nb}]$	41.540 ± 0.037	-0.045 -	-0.297	1.000			
R_{ℓ}^{0}	20.767 ± 0.025	0.033	0.004	0.183	1.000		
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	0.055	0.003	0.006 -	-0.056	1.000	

- Combinations by LEPEWWG, hep-ex/0509008
- Correlations small but essential